

Small Satellite Technology: Industry Update

Catherine Venturini
Project Engineer
The Aerospace Corporation

Presented to: Advisory Committee on Commercial Remote Sensing (ACCRES)

May 15, 2014

Presentation Overview

- Why Now: Technology Potential
- Definitions
- Technology Trends
 - Imaging Payloads
 - Power
 - Attitude Determination and Control
 - Propulsion
 - Communications
 - Ground Systems
 - Launch
- Major Industry Players
- Summary

Technology Potential for Small Satellites

- Why is there so much interest in Smallsats?
 - Public is increasingly aware of the value of on-demand access to geospatial information
 - Price of entry to space and cost per kg for hardware has plummeted
 - Imaging payloads have become more sophisticated and lighter in weight
 - Proliferation of technology that can be leveraged from other sectors
- Benefits
 - STEM, educational aspect still strong
 - Increased interest in US Government
 - Army: tactical communication, medium-resolution imagery to the warfighter via a mobile device within minutes of request
 - Navy: communications, technology development
 - NSF: Geospace and Atmospheric Research
 - NASA: earth technology and science, heliophysics, interplanetary missions, small sat technologies
 - Small business opportunities for data products

Small Satellite Nomenclature

Dashed rectangles refer to volume categories

Technology Trends

Imaging Payloads

- Simple COTS sensors to advanced custom multi-band sensors, HD video capability, increasing resolution
- Aerocube 4 (launched 2012)
- M-Cubed/Cove 2 (launched 2013)
- KYSAT 2 (launched 2013)
- Planet Labs Inc. (initial launch 2013/2014)
- Skybox Imaging Inc. (initial launch 2013)
- GOMX-1 (launched 2013)
- **CubeSat Proximity Operations** Demonstration (CPOD) (launch 2015)
- **Optical Communications and** Sensor Demonstration (OCSD) (launch 2015)

Aerocube 4

M-Cubed/COVE 2 (Reprinted with permission of C. Norton, NASA-JPL/ Caltech)

CPOD (Reprinted courtesy of NASA)

Power

- State of the Art:
 - Early adoption of flat lithium-ion polymer battery packs
 - Unique in the space industry because of the higher risk tolerance of mission designers and more stringent mass/volume requirements.
- On the Horizon: flexible solar cells which will allow for new concepts in solar panel deployment

A computer-generated image of the O/OREOS nanosatellite. Launched Nov 2010. (Reprinted courtesy of NASA Ames)

Phonesat 2.0b - high-efficiency Spectrolab Triangular Advanced Solar Cells. Launched early 2013. (Reprinted courtesy of NASA Ames)

Attitude Determination and Control

State of the Art:

- Relies on miniaturizing existing technology without significant performance degradation
- Miniaturization achieved through new technology such as imaging devices, materials, peripheral circuits, and algorithms
- Typical Small Sat accuracy is 0.1°
- Typical CubeSat accuracy is ~2° but rapidly improving
- On the Horizon: CubeSat pointing accuracy <1°
- Technology gaps:
 - Development of thruster technology for <100 kg satellites
 - Decreased development cost for ADCS software

Sun sensor

Earth sensor

Propulsion

- State of the Art:
 - Cold gas thrusters
 - Solid rocket motors
 - Pulsed plasma thrusters
- On the Horizon: mature chemical and electric propulsion systems within 5 years

Cold gas propulsion unit. Flown in 2006.

Structures, Materials, and Mechanisms

- State of the Art:
 - CubeSat use common standards
 - Micro and Minisats are "custom"
 - NanoSats increasingly standard;
 mostly custom mechanical designs for mechanisms and actuators
- On the horizon: 3D-printed structures (additive manufacturing)

IPEX/CP-8 (Reprinted with permission of C. Norton, NASA-JPL/Caltech)

"Printed" CubeSat structure. (Reprinted courtesy of NASA Ames)

Communications

- State of the Art:
 - Transmission using VHF, UHF, X-band, and IR/visible frequencies
 - Trend of increasing signal frequency and increasing data transfer speeds.
 - Smallsat data rates
 - 10 Mbps in S band
 - 500 Mbps in X band
 - 1.2 Gbps in K/Ku/Ka band
 - CubeSat data rates are lower, order of Kbps
- On the Horizon: laser communication, deployable high-gain antennae

NASA ISARA - Ka band reflectarray. Launch late 2014. (Reprinted with permission of C. Norton, NASA-JPL/Caltech)

NASA EDSN – intersatellite communication swarm using ISM bands. Launch late 2014. (Reprinted courtesy of NASA Ames)

Aerospace Corp. OCSD – laser communication, prox. ops. Launch 2015.

Ground Systems

- State of the Art:
 - Legacy systems
 - Distributed individual mission systems
 - Cost is driven by infrastructure and personnel
 - Satellite phone/data networks being tested
 - Primarily amateur frequency bands
- On the Horizon:
 - Open source software packages which enable distributed operations of small spacecraft
 - Commoditized networks
- Tech gap: autonomous or highly automated operations to make swarms/constellations affordable

JPL ground station. (Reprinted with permission of C. Norton, NASA-JPL/Caltech)

Parabolic dish antenna

Launch

- State of the Art:
 - Adapters used to launch small satellites as secondary payloads (1U-6U, ESPA class)
 - Rideshare cannot accommodate specialized orbits or precisely timed rendezvous
 - Limits advantages of small satellites such as quick acquisition time and low total cost
- On the Horizon:
 - Small launch vehicles
 - Orbital maneuvering systems
 - Large CubeSat deployers
- Technology Gaps: dedicated LV's are required to fully realize rapid acquisition and mission design flexibility

CubeSats launched from the International Space Station on 4 Oct. 2012 (Reprinted courtesy of NASA)

Space X's Falcon 9 rocket 8 Dec. 2010 (Reprinted courtesy of NASA)

Small Satellite Industry Players

- Kentucky Space LLC
 - Consortium members include Morehead State Univ (KY), associated with Prof Bob Twiggs who co-established the CubeSat technology standard while at Stanford University.
 - Goal: R&D, advance technology
- GomSpace
 - Goal: R&D, manufacturer of CubeSat components
- Tyvak Nanosatellite Systems Inc.
 - Close ties with Cal Poly San Luis Obispo (CA), associated with Dr. Jordi Puig-Suari who coestablished the CubeSat technology standard while at CP-SLO
 - Goal: R&D, manufacturer of CubeSat components, launch integration, ground solutions
- NanoRacks LLC
 - Goal: launch services to ISS
- Clyde Space
 - Goal: R&D, manufacturer of CubeSat power sub-systems (EPS boards, solar panels, batteries)
- Andrews Space/Spaceflight Inc.
 - Goal: launch integration services, R&D, manufacturer of CubeSat components
- ISIS (Innovative Solutions in Space)
 - Goal: launch integration, CubeSat subsystems, ground solutions
- Pumpkin Inc.
 - Goal: R&D, CubeSat components, "CubeSat Kit"

Summary

- CubeSat technology advancing at a rapid pace
- COTS technology keeping cost low
- Future missions are becoming more complex swarms and constellations, advanced payloads, beyond LEO orbits
- Growing industrial base especially for small businesses
- Outstanding issues in community:
 - Access to space
 - Rideshare opportunities are here
 - Dedicated launch on the horizon needed for missions needing specific orbits, constellations, launch on demand
 - Ground systems support and cost as missions become more complex, constellations
 - Tracking & Identification
 - Orbital Debris

